
Progress towards Multi-Criteria Design Optimisation using
DesignScript with SMART Form, Robot Structural analysis and

Ecotect building performance analysis
Robert Aish : Autodesk

Al Fisher : Buro Happold
Sam Joyce : University of Bath

Andrew Marsh : Performative Design

Abstract
Important progress towards the development of a system that enables multi-criteria design
optimisation has recently been demonstrated during a research collaboration between
Autodesk’s DesignScript development team, the University of Bath and the engineering
consultancy Buro Happold. This involved integrating aspects of the Robot Structural
Analysis application, aspects of the Ecotect building performance application and a
specialist form finding solver called SMART Form (developed by Buro Happold) with
DesignScript to create a single computation environment. This environment is intended for
the generation and evaluation of building designs against both structural and building
performance criteria, with the aim of expediently supporting computational optimisation
and decision making processes that integrate across multiple design and engineering
disciplines.

A framework was developed to enable the integration of modeling environments with
analysis and process control, based on the authors’ case studies and experience of applied
performance driven design in practice. This more generalised approach (implemented in
DesignScript) enables different designers and engineers to selectively configure geometry
definition, form finding, analysis and simulation tools in an open-ended system without
enforcing any predefined workflows or anticipating specific design strategies and allows
for a full range of optimisation and decision making processes to be explored.

This system has been demonstrated to practitioners during the Design Modeling
Symposium, Berlin in 2011 and feedback from this has suggested further development.

1 Introduction
The optimum design of buildings is a recurring challenge to architecture and engineering
teams. But to begin with we need to define what we mean by design optimisation? ‘Design
Optimisation’ is a really a shorthand for ‘performance satis�cing’, that is the design of
buildings to effectively satisfy multiple potentially conflicting performance criteria.

Historically, there have been three approaches (Figure 1):

 Post-rationalisation: a Building concept form is proposed by an architect and then

„after the fact‟ the design is analysed, its performance is evaluated and the building

geometry and engineering implementation is rationalized, with the objective of

improving the performance, while minimizing the change to the original building

form or design concept. [For example: Foster + Partners‟ London City Hall

building.. where a „pebble‟ shaped building concept was rationalized into a series of

sheared cone constructions]

Effectively: Design -> Solution

 Pre-rationalisation: Before the form of the building is defined, there is agreement

amongst the design team to use particular architectural geometry or construction

techniques that are thought to provide an optimum solution. The building form is

proposed by the architect within these constraints [For example Foster + Partners‟

Sage Performing Arts Centre, Gateshead, where the use of torus patch geometry

was predefined in order to optimize the facade fabrication process]

(Whitehead and Peters 2008)

Effectively: Solution -> Design

 Embedded rationality: The engineering performance assessment and the form

generation algorithm are combined into a single design optimisation process [For

example Foster + Partners‟ Roof for the Great Court of the British Museum, where

the optimum form of the roof geometry was arrived at by computation]

(Williams 2001)

Effectively: Solution <-> Design

Figure 1. Examples of alternative forms of ‘design rationalisation’

We can see that existing approaches of pre and post rationalization have produced some

interesting results but are essentially expedient. This is due to the fact that in both cases

some predefined conditions have been applied that in most cases lead to constraints in

deriving the optimal form. As such, it is generally accepted that the most appropriate

approach to truly open ended design optimisation is through embedded rationality.

This acceptance comes from the understanding that buildings are collections of closely

coupled subsystems, such as the envelop, internal spatial topology, structure, building

services, occupancies and energy transfer systems, each with their own engineering

discipline and performance criteria. To create an optimal building, there are important

interactions to be considered and trade-off‟s to be made within and between these

subsystems and the derived or emergent whole. Each subsystem may be evaluated in terms

of its capital and running costs. Therefore single criteria optimisation is inappropriate.

There are also practical issues for designers to gain access to design optimisation tools. A

„design-centric‟ approach is based on augmenting generative design tools with easy to use

analysis and optimisation add-on‟s, but the downside is that these add-on‟s often reflect the

assumptions of the add-on creator and may be restricted by these assumptions, while at the

same time such generality may not be matched to the specific design problem being

tackled.

Conversely specialised software tools, created by advanced scripting, can be used to

connect programs and control complex optimisation with decision making processes: the

downside of such specialist (or project specific) tools are that they are often: (a) only

applicable for use on well-defined problems in complex large scale projects (b) are not

sufficiently general or reusable (c) require considerable insight on the part of the users and

(d) are therefore not practical for the use by non-experts.

We can chart the evolution from conventional computer aided design to design

optimisation, as follows:

1. CAD ... early CAD tools were developed to offer a digital implementation of

conventional analogue design media, such as.. sketching, drafting, modeling,

which required the designer to „manually‟ construct the design configuration.

2. Generative design tools... (Figure 2) changed the design paradigm from analogue

conventions and the direct construction of the design by the user. Instead, the

designer indirectly controls the generative process by:

 developing the set of constructive/generative rules

 defining the value of the set of „design driver‟ variables

 interpreting the resulting generated design

Figure 2. Generative design

generation

designer

generated result

interpretation

generative rules

driver variables

3. Engineering analysis tools.. (Figure 3) here the designer controls the process by:

 selecting the analysis tools

 defining how the design configuration is idealised into a form suitable for

the chosen analysis methods

 interpreting the resulting performance analysis

Figure 3. Engineering analysis

4. Design optimisation.. (Figure 4) Combines generative mechanisms and analytical

/evaluative mechanisms into a single iterative process, in which the performance

analysis is a direct input into the generative process. The designer controls this

process by:

 defining a single „utility‟ measurement to compare different designs

[usually based on some weighted combination of different performance

variables]

 specifying the mechanism to automatically generate new candidate

configurations [either by generating new combinations of driver variables

or by modifying the generative rules]

Figure 4. Design optimisation

designer

analysis

idealisation

configuration

interpretation

performance

generation

designer

generated result

generative rules

driver variables

analysis

idealisation

performance

utility function

interpretation

In the progression from CAD to Design Optimisation, we see increasing levels of

indirection as the designer progressively removes himself not just from the direct act of

designing, but also from the evaluative loop. He moves from „doing‟ to the far more

strategic role of „controlling‟.

So in summary, design optimisation depends on some or all of the following:

 A generative process (to construct the design alternatives), which may be explicitly

driven by identifiable design variables

 A number of evaluative processes (to evaluate the performance of the different

subsystems)

 A fitness function to combine all performance criteria into a single fitness measure

 A manager process that:

o initiates the generative process with some initial values for the design

variables

o drives the evaluative processes

o executes the fitness function

o decide whether an optimum design has been produced and if not

o refines the values of the design variables

o and continues the iterative optimisation process

Any one of these processes may use a human designer or engineer, or a computer based

application. The manager process may include numeric optimisation techniques, genetic

algorithms or neural networks for decision support. Also this process is in many instances

a hierarchy of systems and subsystems, each with their own internal decision making and

change propagation logic.

2 Current Research:

Progress towards the development of a multi-criteria design optimisation system has

recently been demonstrated during a joint research collaboration between the Autodesk‟s

DesignScript development team and the engineering consultancy Buro Happold. This

research builds on the authors‟ previous work, including the development of domain

specific end-user programming languages, (Author 1, 2011), the use of genetic algorithms

for structural optimisation (Evins, Author 3 et al, 2012) (Shrubshall and Author 2, 2011)

and the use of a physics solver to optimize geometric configuration of facade planar quads

(Attar, Author 1, Stam et al 2009).

This project aimed to build on this research by integrating the following technologies

chosen for their broad but practically applicability informed by the authors experience in

the industry.

 Generative Building Design

o using associative parametric modeling in DesignScript

o algorithmic form finding using Buro Happold‟s „SMART Form‟ software

integrated into DesignScript

 Engineering performance analysis

o structural analysis using aspects of the Robot Structural application

integrated with DesignScript

o environmental analysis using aspects of Ecotect integrated into

DesignScript

 Optimisation management process: where change logic and control is

automatically propagated by DesignScript to re-compute:

o Underlying architectural geometry

o SMART Form form finding

o Robot structural analysis and member sizing

o Shading device geometry creation

o Ecotect insolation analysis of the shading device geometry

It is important to note that this particular sequence (geometry, form finding, structural

analysis, shading geometry and insolation analysis) was a particular modeling sequence

that was appropriate to the demonstration project. Different projects could have different

modeling sequences and are equally well supported by this system.

The demonstration project was the design of a roof to cover the ruined shell of a gallery at

the rear of the University of the Arts in Berlin (Figure 5).

Figure 5. The site for the demonstration project: the gallery at the rear of the

University of the Arts in Berlin

The goal was to conceive of a system where the objects produced by generative building

techniques or any other means (stochastic‟), were direcly linked to their corresponding

analysis representations and results objects.

Fig. 6: DesignScript environment showing:

. Top Left: DesignScript source code window

. Lower Left: DesignScript ‘consequential’ execution window

. Center: DesignScript ‘model’ with SMART Form, Robot and Ecotect model

. Right: Robot structural analysis application driven remotely via DesignScript

3 Implementation

The implementation depended on the integration of Robot, SMART Form and Ecotect into

DesignScript (Figure 3). This was achieved by developing special DesignScript classes for

each of these engineering applications. The methods in these DesignScript class made calls

into external methods and functions in the respective host applications using the

DesignScript Foreign Function Interface (FFI).

The following table (Figure 7) describes the implementation of the different plug-in‟s using

the DesignScript Foreign Function Interface (FFI).

Figure 7. The DesignScript application architecture with the ability of a single script

to execute different plug-in’s on multiple host applications.

The DesignScript Foreign Function Interface (FFI) is exactly the same technology that

DesignScript uses to interface to the CAD host application (currently AutoCAD).

3.1 Robot integration

Implementation

The integration with the Robot structural analysis application was implemented as a series

of “Structural” classes directly accessible and instantiated by users. The connectivity of the

instances of these “Structural” classes builds graph-network relationships, with helper

functions to enable „dumb‟ geometry to be promoted to structural elements.

The elements of the structure to be calculated are then passed into an “Analysis” object.

The intention is that this “Analysis” object allows the user more direct control over the

execution of what could possibly be a computationally heavy task. This structural

“Analysis” object then creates a collection of structural “Result” objects corresponding to

the collection of input structural objects. In this way the structural analysis could be used in

both associative programming and (in future) in imperative programming. These “Result”

objects can be interrogated for their analytical information both at a model level (for

example, the overall deflection) and at an element level (for example, shear stress at a point

along a beam).

User centric orientation

An important aim for the Robot integration was to enables a non-engineer to develop a

structural model and to make a reasonable interpretation of its performance. Support for

the non-specialist user included providing intuitive methods to help the user give

reasonable values for complex structural settings (for example, bar gamma angles defined

by the direction of the surface normal and parametric section definitions).

Another way that the Robot integration supported the non-specialist user was to provide

more holistic measures of performance, such as “material utility” (maximum analysed

stress/allowable stress) which can simply show if an element is unsafe (over 1) and if not

how well the element is used (0-1). This type of holistic measure is complimentary to the

more conventional indicators of structural performance such as Bending Moments and Von

Mise Stress. The “material utility” results can be interrogated both in the generated Robot

model as well as visually displayed within the Design Script environment (Figure 8).

3.2 SMART Form integration

Implementation

Much like the Robot implementation described above, the integration of SMART Form

enables SMART Form classes to be instantiated directly within the DesignScript

environment. The form finding process works by defining individual geometrical entities

as „bars‟ with elastic properties. So again a graph-network relationship of nodes and bars is

created and stored. This symmetry with the Robot analysis means that once a structural

graph has been defined by a user it can be mapped directly from SMART Form to Robot or

vice versa. An iterative process of non-linear structural analysis is then performed to find

the equilibrium geometry for the given structural properties (elasticity, member slack

length/pre-stress) and boundary conditions.

Figure 8. The output from Robot Structural analysis displayed in DesignScript,

showing the ultilisation of the structural members, colour coded green to blue for

under utilised and red for over utilized.

Design intent

Defining and exposing the structural properties inherent within the DesignScript

environment allows users to manipulate the values and thus sculpt a desired form for their

design. Here the structural performance criteria of minimum energy for the system is

persistent within the model and is used to drive the equilibrium form. Thus these

parameters can be manipulated, through moving boundary supports, changing pre-stress,

introducing heterogeneity in the stiffness distribution etc., to satisfy additional design and

analysis criteria, as the demonstration workflow illustrates below (figure 9).

Figure 9. SMART Form executed within DesignScript. Left: Relaxation of a network

of bars. Right: Sculptural manipulation of the form enabled through varying

stiffness properties

3.3 Ecotect integration

The Ecotect plug-in in this instance focused on solar design and analysis. The calculation

of instantaneous incident solar radiation is relatively straightforward as it involves just a

single sun position and everything can be readily solved geometrically. However, of

significantly more use to a designer are cumulative results such as the total collection over

the whole year or just for summer. This significantly increases the calculations required,

making these potentially very computationally expensive as they are highly dependent on

the geometric complexity of both the model and any potential obstructions that surround it.

Thus, rather than provide simple, high-level functions that return results for a given set of

date, time, location and geometry inputs, the aim in this work was to provide scope for

experimentation and usage patterns not envisaged by the plug-in developers, as well as

support interactive design feedback, which ideally requires calculation results as close to

real-time as possible.

Achieving fast results on-demand required a tight integration of the calculation process

within the DesignScript environment, and a multi-step approach that allows for the

optimized caching of reusable results. This also meant exposing the individual services

within Ecotect that dealt with geo-location of the site, accurate determination of solar

position, detailed shading/overshadowing calculations, access to hourly weather data files,

and then the incident solar radiation functions that coordinate all this information into

useable values. The various DesignScript classes required are shown below (Figure 10).

Figure 10. An outline of the DesignScript classes exposed from Ecotect.

Once a weather data file and location have been selected, a significant amount of solar

information can be pre-calculated and cached for subsequent (re)use. Similarly, whilst

local overshadowing on a potentially animated building model will vary significantly, the

use of a static context model of site obstructions means that optimizations such as spatial

trees can be pre-calculated to significantly speed up the calculation of global

overshadowing.

The most significant improvement in computational performance is the move from

multiple individual solar position calculations to the use of a sub-divided sky model. This

is a well-known technique (CIE 1994) but the innovation here is the consistent separation

of each component of the calculation, several of which can be pre-calculated and/or

augmented from global model information, either just-in-time or while the system is idle

(Figure 11).

In it, the diffuse and direct solar energy distributions need only be calculated once when the

weather file and location are initially set. Similarly, the cosine law distribution for a flat

surface can be very quickly determined from a pre-calculated spherical distribution, using

the surface orientation to index it appropriately. Also, if the same model is to be used in a

series of interactive analysis, this approach allows a script to save calculated obstruction

and reflection masks for individual surfaces, groups of objects or even the whole model to

disk for re-use in each subsequent analysis.

Figure 11. The use of a sky subdivision model and the separation of each component

of the solar radiation calculation.

This integration of SMART Form, Robot and Ecotect is part of a strategy to integrate a

number of design tools (geometric, generative and evaluative) into DesignScript.

Essentially DesignScript is extensible and using the „Foreign Function Interface‟ (FFI),

classes in external DLL‟s can be exposed as DesignScript Classes.

4 The Current Application

A demonstration process was developed based on the capabilities of the current system and

this formed the core of the workshop on DesignScript at the Design Modelling Symposium,

Berlin, 2011. The intent was to present a multi-scalar analysis and optimisation process

which utilised functionality from all of the plug-ins developed and with the DesignScript

language as the unifying technology.

The overview of the process was as follows:

1. Establish Site constraints (model existing building shell)

2. Make regular rectilinear grid over the plan courtyard with a parametric number of

elements in each direction

3. Generate a relaxation model derived from the geometric model, with fixed boundary

nodes on the edge of the grid and liner spring elements in place of the lines.

4. Relax the model with a negative gravity force to produce an efficient structural form

5. Identify the relaxed grid cells and generate shading panels associated to the grid unit

6. Convert the initial geometry into solar analysis panels.

7. Extract sun path information and analyse the solar panels

8. Orient the panels base on this information

9. Obtain the overall insolation incident on the courtyard of the space

10. Modify the gravitational force of the relaxed grid (step 4) to influence the insolation on

the floor by reviewing the updated insolation analysis values

11. Develop a steel structural model with uniform sections based on the relaxed grid with

the same boundary conditions as the relaxation model.

12. Check the maximum stresses in each of the beams

13.Size up any failing beams and down any under-stressed beams in proportion to the

amount they are off the ideal utilisation of the material

14.Resize the base grid (step 2) and after the auto update of all the other modeling and

analysis systems, review whether the steel weights significantly change

This initial research demonstrated the capability of the system to support the design

decision process informed by appropriate and reliable performance criteria. The ability to

nest and reorder generative and analytical processes within the same overall computation

design environment is another important feature of the system. This allows the generation

of configurable hierarchies comprised of interrelated geometry generation, analysis and

decision making processes.

The system was initially tuned by the user and then subsequently by basic implementation

of a simple Newtonian goal seeking algorithm. The quality of actual optimisation

processes can be refined with more time and is the subject of the next research phase.

When demonstrated at the Berlin workshop, DesignScript with its set of plug-in‟s was

generally regarded with interest as a system with the capability for practical performance

driven design. The workshop participants spanned a broad range of architectural and

engineering experience and a number of the participants were able to take this model as a

starting point for their own exploration, including re-orienting the hierarchy of the design

logic towards their own intentions.

5 Future Research:

Based on the feedback from the DesignScript workshop…

There are number of interesting opportunities on the horizon for the next round of research:

 Imperative Programming: With imperative programming being added to

DesignScript, the ability for practitioners to develop their own decision making and

optimisation routines exists. We are preparing for a second stage in the joint

research collaboration between the Autodesk DesignScript development team and

Buro Happold. Imperative programming will enable a general purpose genetic

algorithm to be developed for DesignScript.

 Options Language and Cloud computing: The DesignScript is being extended

with a special „Options‟ language, which can be to control the generation of

multiple alternative design solution using cloud based parallelism. Design

optimisation, and specifically genetic algorithms require large number of solutions

to be generated. So this approach will be important in future design optimisation.

Conclusions:

The Multi-Criteria Design and Optimisation of buildings is an interesting technical

challenge which if solved has the potential to bring substantial benefits to architects and

building engineers. This paper shows a conceptual approach to supporting this kind of

process within a single system.

More generally, Design Optimisation raises some profound issues for architecture. We

would all recognise that buildings are social and cultural artefacts as well as complex

engineering systems: but what is the balance? Do we use engineering to realise

pre-conceived cultural effects, or is the cultural significance of a building established

because it symbolises in a single artefact the audacious resolution of multiple, complex and

interacting engineering challenges. When we consider something like the international

space station, its validity as a cultural artefact (if considered at all) is derived from its intent

and its success as an engineering system. But when it comes to terrestrial architecture it

seems that we have yet to become confident with such a methodology. For all the recent use

of computational geometry, the concept of a building is all too often over concerned with

cultural pre-conceptions. Many of the recent advances in Design Computation have

emerged as tools for iconic architecture. Perhaps we should consider how these tools could

be harnessed to address more profound issues of global concern. In a world of increasing

population and rising economic aspirations coupled with diminishing resources and

pressing environment concerns, survival will depend on the harnessing of the intellect,

either directly or in conjunction with computation, where performance and optimality will

become the new design concept.

References

Whitehead, H. and Peters, B. (2008). Form and Complexity. In Space Craft: developments

in Architectural Computing. (ed) D. Littlefied, RIBA Enterprises.

Williams, C. (2001). The analytic and numerical definition of the geometry of the British

Museum Great Court Roof. In Mathematics and Design (eds) M. Burry, S. Datta, A.

Dawson, and A. J. Rollo, 434-440, Deakin University, Geelong, Victoria 3217,

Australia, 2001.

Author 1. (2011). DesignScript: origins, explanation, illustration, Design Modeling

Symposium, University of the Arts, Berlin

Evins, R., Author 3. et al (2012). Multi-objective optimisation: getting more for less by

design, Proceedings of the Institution of Civil Engineers, Civil Engineering Special

Issue 165.

Shrubshall, C., Author 2. (2011). The Practical Application of Structural Optimisation in

the Design of the Louvre Abu Dhabi. In: Proceedings of the International Association

for Shell and Spatial Structures Symposium. London.

Attar, R., Author 1, Stam, J., et al (2009) Physics-based generative design, CAAD Futures.

Commission Internationale de l'Eclairage Guide to recommended practice of daylight

measurement (1994). (ed) J D Kendrick, Vienna: Commission Internationale de

l'Eclairage.

