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Abstract 
Important progress towards the development of a system that enables multi-criteria design 
optimisation has recently been demonstrated during a research collaboration between  
Autodesk’s DesignScript development team, the University of Bath and the engineering 
consultancy Buro Happold. This involved integrating aspects of the Robot Structural 
Analysis application, aspects of the Ecotect building performance application and a 
specialist form finding solver called SMART Form (developed by Buro Happold) with 
DesignScript to create a single computation environment. This environment is intended for 
the generation and evaluation of building designs against both structural and building 
performance criteria, with the aim of expediently supporting computational optimisation 
and decision making processes that integrate across multiple design and engineering 
disciplines. 

A framework was developed to enable the integration of modeling environments with 
analysis and process control, based on the authors’ case studies and experience of applied 
performance driven design in practice. This more generalised approach (implemented in 
DesignScript) enables different designers and engineers to selectively configure geometry 
definition, form finding, analysis and simulation tools in an open-ended system without 
enforcing any predefined workflows or anticipating specific design strategies and allows 
for a full range of optimisation and decision making processes to be explored. 

This system has been demonstrated to practitioners during the Design Modeling 
Symposium, Berlin in 2011 and feedback from this has suggested further development.  

1 Introduction 
The optimum design of buildings is a recurring challenge to architecture and engineering 
teams. But to begin with we need to define what we mean by design optimisation? ‘Design 
Optimisation’ is a really a shorthand for ‘performance satis�cing’, that is the design of 
buildings to effectively satisfy multiple potentially conflicting performance criteria.  

  



Historically, there have been three approaches (Figure 1): 

 Post-rationalisation: a Building concept form is proposed by an architect and then 

„after the fact‟ the design is analysed, its performance is evaluated and the building 

geometry and engineering implementation is rationalized, with the objective of 

improving the performance, while minimizing the change to the original building 

form or design concept. [For example: Foster + Partners‟ London City Hall 

building.. where a „pebble‟ shaped building concept was rationalized into a series of 

sheared cone constructions]  

Effectively: Design -> Solution 

 Pre-rationalisation: Before the form of the building is defined, there is agreement 

amongst the design team to use particular architectural geometry or construction 

techniques that are thought to provide an optimum solution. The building form is 

proposed by the architect within these constraints [For example Foster + Partners‟ 

Sage Performing Arts Centre, Gateshead, where the use of torus patch geometry 

was predefined in order to optimize the facade fabrication process]       

(Whitehead and Peters 2008) 

Effectively: Solution -> Design 

 Embedded rationality: The engineering performance assessment and the form 

generation algorithm are combined into a single design optimisation  process [For 

example Foster + Partners‟ Roof for the Great Court of the British Museum, where 

the optimum form of the roof geometry was arrived at by computation]    

(Williams 2001) 

Effectively: Solution <-> Design 

 

Figure 1. Examples of alternative forms of ‘design rationalisation’  

We can see that existing approaches of pre and post rationalization have produced some 

interesting results but are essentially expedient. This is due to the fact that in both cases 

some predefined conditions have been applied that in most cases lead to constraints in 



deriving the optimal form. As such, it is generally accepted that the most appropriate 

approach to truly open ended design optimisation is through embedded rationality. 

This acceptance comes from the understanding that buildings are collections of closely 

coupled subsystems, such as the envelop, internal spatial topology, structure, building 

services, occupancies and energy transfer systems, each with their own engineering 

discipline and performance criteria. To create an optimal building, there are important 

interactions to be considered and trade-off‟s to be made within and between these 

subsystems and the derived or emergent whole. Each subsystem may be evaluated in terms 

of its capital and running costs. Therefore single criteria optimisation is inappropriate.  

There are also practical issues for designers to gain access to design optimisation tools. A 

„design-centric‟ approach is based on augmenting generative design tools with easy to use 

analysis and optimisation add-on‟s, but the downside is that these add-on‟s often reflect the 

assumptions of the add-on creator and may be restricted by these assumptions, while at the 

same time such generality may not be matched to the specific design problem being 

tackled.  

Conversely specialised software tools, created by advanced scripting, can be used to 

connect programs and control complex optimisation with decision making processes: the 

downside of such specialist (or project specific) tools are that they are often: (a) only 

applicable for use on well-defined problems in complex large scale projects (b) are not 

sufficiently general or reusable (c) require considerable insight on the part of the users and 

(d) are therefore not practical for the use by non-experts. 

We can chart the evolution from conventional computer aided design to design 

optimisation, as follows: 

1. CAD ... early CAD tools were developed to offer a digital implementation of 

conventional analogue design media, such as.. sketching, drafting, modeling, 

which required the designer to „manually‟ construct the design configuration. 

2. Generative design tools... (Figure 2) changed the design paradigm from analogue 

conventions and the direct construction of the design by the user. Instead, the 

designer indirectly controls the generative process by:  

 developing the set of constructive/generative rules  

 defining the value of the set of „design driver‟ variables  

 interpreting the resulting generated design 

 

 

 

 

 

 

Figure 2. Generative design   
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3. Engineering analysis tools.. (Figure 3) here the designer controls the process by:  

 selecting the analysis tools  

 defining how the design configuration is idealised into a form suitable for 

the chosen analysis methods  

 interpreting the resulting performance analysis 

 

 

 

 

 

 

Figure 3. Engineering analysis 

 

4. Design optimisation.. (Figure 4) Combines generative mechanisms and analytical 

/evaluative mechanisms into a single iterative process, in which the performance 

analysis is a direct input into the generative process. The designer controls this  

process by: 

 defining a single „utility‟ measurement  to compare different designs 

[usually based on  some  weighted combination of different performance 

variables]  

 specifying the mechanism to automatically generate new candidate 

configurations [either by generating new combinations  of driver variables 

or by modifying the generative rules]      

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Design optimisation  
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In the progression from CAD to Design Optimisation, we see increasing levels of 

indirection as the designer progressively removes himself not just from the direct act of 

designing, but also from the evaluative loop. He moves from „doing‟ to the far more 

strategic role of „controlling‟. 

So in summary, design optimisation depends on some or all of the following: 

 A generative process (to construct the design alternatives), which may be explicitly 

driven by identifiable design variables 

 A number of evaluative processes (to evaluate the performance of the different 

subsystems) 

 A fitness function to combine all performance criteria into a single fitness measure 

 A manager process that:  

o initiates the generative process with some initial values for the design 

variables 

o drives the evaluative processes 

o executes the fitness function 

o decide whether an optimum design has been produced and if not 

o refines the values of the design variables  

o and continues the iterative optimisation process 

Any one of these processes may use a human designer or engineer, or a computer based 

application. The manager process may include numeric optimisation techniques, genetic 

algorithms or neural networks for decision support.  Also this process is in many instances 

a hierarchy of systems and subsystems, each with their own internal decision making and 

change propagation logic. 

2 Current Research: 

Progress towards the development of a multi-criteria design optimisation system has 

recently been demonstrated during a joint research collaboration between the Autodesk‟s 

DesignScript development team and the engineering consultancy Buro Happold. This 

research builds on the authors‟ previous work, including the development of domain 

specific end-user programming languages, (Author 1, 2011), the use of genetic algorithms 

for structural optimisation (Evins, Author 3 et al, 2012) (Shrubshall and Author 2, 2011)  

and the use of a physics solver to optimize geometric configuration of facade planar quads 

(Attar,  Author 1, Stam et al 2009).  

This project aimed to build on this research by integrating the following technologies 

chosen for their broad but practically applicability informed by the authors experience in 

the industry. 

  



 Generative Building Design  

o using associative parametric modeling in DesignScript 

o algorithmic form finding using Buro Happold‟s „SMART Form‟ software 

integrated into DesignScript 

 Engineering performance analysis 

o structural analysis using aspects of the Robot Structural application 

integrated with DesignScript 

o environmental analysis using aspects of Ecotect integrated into 

DesignScript 

 Optimisation management process: where change logic and control is 

automatically propagated by DesignScript to re-compute: 

o Underlying architectural geometry 

o SMART Form form finding 

o Robot structural analysis and member sizing 

o Shading device geometry creation 

o Ecotect insolation analysis of the shading device geometry 

It is important to note that this particular sequence (geometry, form finding, structural 

analysis, shading geometry and insolation analysis) was a particular modeling sequence 

that was appropriate to the demonstration project. Different projects could have different 

modeling sequences and are equally well supported by this system. 

The demonstration project was the design of a roof to cover the ruined shell of a gallery at 

the rear of the University of the Arts in Berlin (Figure 5). 

 

 
 

Figure 5. The site for the demonstration project: the gallery at the rear of the 

University of the Arts in Berlin 

The goal was to conceive of a system where the objects produced by generative building 

techniques or any other means (stochastic‟), were direcly linked to their corresponding 

analysis representations and results objects.  



 
 

Fig. 6: DesignScript environment showing:                                                           

.      Top Left: DesignScript source code window                                         

.      Lower Left: DesignScript ‘consequential’ execution window                                   

.      Center: DesignScript ‘model’ with SMART Form, Robot and Ecotect model              

.      Right: Robot structural analysis application driven remotely via DesignScript 

3 Implementation 

 

The implementation depended on the integration of Robot, SMART Form and Ecotect into 

DesignScript (Figure 3). This was achieved by developing special DesignScript classes for 

each of these engineering applications. The methods in these DesignScript class made calls 

into external methods and functions in the respective host applications using the 

DesignScript Foreign Function Interface (FFI).  

The following table (Figure 7) describes the implementation of the different plug-in‟s using 

the DesignScript Foreign Function Interface (FFI). 

 

Figure 7. The DesignScript application architecture with the ability of a single script 

to execute different plug-in’s on multiple host applications. 

The DesignScript Foreign Function Interface (FFI) is exactly the same technology that 

DesignScript uses to interface to the CAD host application (currently AutoCAD). 



3.1 Robot integration 

Implementation 

The integration with the Robot structural analysis application was implemented as a series 

of “Structural” classes directly accessible and instantiated by users. The connectivity of the 

instances of these “Structural” classes builds graph-network relationships, with helper 

functions to enable „dumb‟ geometry to be promoted to structural elements.  

The elements of the structure to be calculated are then passed into an “Analysis” object. 

The intention is that this “Analysis” object allows the user more direct control over the 

execution of what could possibly be a computationally heavy task. This structural 

“Analysis” object then creates a collection of structural “Result” objects corresponding to 

the collection of input structural objects. In this way the structural analysis could be used in 

both associative programming and (in future) in imperative programming. These “Result” 

objects can be interrogated for their analytical information both at a model level (for 

example, the overall deflection) and at an element level (for example, shear stress at a point 

along a beam). 

User centric orientation 

An important aim for the Robot integration was to enables a non-engineer to develop a 

structural model and to make a reasonable interpretation of its performance. Support for 

the non-specialist user included providing intuitive methods to help the user give 

reasonable values for complex structural settings (for example, bar gamma angles defined 

by the direction of the surface normal and parametric section definitions).  

Another way that the Robot integration supported the non-specialist user was to provide 

more holistic measures of performance, such as “material utility” (maximum analysed 

stress/allowable stress) which can simply show if an element is unsafe (over 1) and if not 

how well the element is used (0-1). This type of holistic measure is complimentary to the 

more conventional indicators of structural performance such as Bending Moments and Von 

Mise Stress. The “material utility” results can be interrogated both in the generated Robot 

model as well as visually displayed within the Design Script environment (Figure 8). 

3.2 SMART Form integration 

Implementation  

Much like the Robot implementation described above, the integration of SMART Form 

enables SMART Form classes to be instantiated directly within the DesignScript 

environment. The form finding process works by defining individual geometrical entities 

as „bars‟ with elastic properties. So again a graph-network relationship of nodes and bars is 

created and stored. This symmetry with the Robot analysis means that once a structural 

graph has been defined by a user it can be mapped directly from SMART Form to Robot or 

vice versa. An iterative process of non-linear structural analysis is then performed to find 

the equilibrium geometry for the given structural properties (elasticity, member slack 

length/pre-stress) and boundary conditions.  



 

Figure 8. The output from Robot Structural analysis displayed in DesignScript, 

showing the ultilisation of the structural members, colour coded green to blue for 

under utilised and red for over utilized. 

Design intent 

Defining and exposing the structural properties inherent within the DesignScript 

environment allows users to manipulate the values and thus sculpt a desired form for their 

design. Here the structural performance criteria of minimum energy for the system is 

persistent within the model and is used to drive the equilibrium form. Thus these 

parameters can be manipulated, through moving boundary supports, changing pre-stress, 

introducing heterogeneity in the stiffness distribution etc., to satisfy additional design and 

analysis criteria, as the demonstration workflow illustrates below (figure 9). 

 

Figure 9. SMART Form executed within DesignScript. Left: Relaxation of a network 

of bars. Right: Sculptural manipulation of the form enabled through varying 

stiffness properties   



3.3 Ecotect integration  

The Ecotect plug-in in this instance focused on solar design and analysis. The calculation 

of instantaneous incident solar radiation is relatively straightforward as it involves just a 

single sun position and everything can be readily solved geometrically. However, of 

significantly more use to a designer are cumulative results such as the total collection over 

the whole year or just for summer. This significantly increases the calculations required, 

making these potentially very computationally expensive as they are highly dependent on 

the geometric complexity of both the model and any potential obstructions that surround it. 

Thus, rather than provide simple, high-level functions that return results for a given set of 

date, time, location and geometry inputs, the aim in this work was to provide scope for 

experimentation and usage patterns not envisaged by the plug-in developers, as well as 

support interactive design feedback, which ideally requires calculation results as close to 

real-time as possible.  

Achieving fast results on-demand required a tight integration of the calculation process 

within the DesignScript environment, and a multi-step approach that allows for the 

optimized caching of reusable results. This also meant exposing the individual services 

within Ecotect that dealt with geo-location of the site, accurate determination of solar 

position, detailed shading/overshadowing calculations, access to hourly weather data files, 

and then the incident solar radiation functions that coordinate all this information into 

useable values. The various DesignScript classes required are shown below (Figure 10). 

 

 

Figure 10. An outline of the DesignScript classes exposed from Ecotect. 

Once a weather data file and location have been selected, a significant amount of solar 

information can be pre-calculated and cached for subsequent (re)use. Similarly, whilst 

local overshadowing on a potentially animated building model will vary significantly, the 

use of a static context model of site obstructions means that optimizations such as spatial 

trees can be pre-calculated to significantly speed up the calculation of global 

overshadowing.  

The most significant improvement in computational performance is the move from 

multiple individual solar position calculations to the use of a sub-divided sky model. This 

is a well-known technique (CIE 1994) but the innovation here is the consistent separation 

of each component of the calculation, several of which can be pre-calculated and/or 

augmented from global model information, either just-in-time or while the system is idle 

(Figure 11).  



In it, the diffuse and direct solar energy distributions need only be calculated once when the 

weather file and location are initially set. Similarly, the cosine law distribution for a flat 

surface can be very quickly determined from a pre-calculated spherical distribution, using 

the surface orientation to index it appropriately. Also, if the same model is to be used in a 

series of interactive analysis, this approach allows a script to save calculated obstruction 

and reflection masks for individual surfaces, groups of objects or even the whole model to 

disk for re-use in each subsequent analysis. 

 

Figure 11. The use of a sky subdivision model and the separation of each component 

of the solar radiation calculation. 

This integration of SMART Form, Robot and Ecotect is part of a strategy to integrate a 

number of design tools (geometric, generative and evaluative) into DesignScript. 

Essentially DesignScript is extensible and using the „Foreign Function Interface‟ (FFI), 

classes in external DLL‟s can be exposed as DesignScript Classes. 

4 The Current Application  

A demonstration process was developed based on the capabilities of the current system and 

this formed the core of the workshop on DesignScript at the Design Modelling Symposium, 

Berlin, 2011. The intent was to present a multi-scalar analysis and optimisation process 

which utilised functionality from all of the plug-ins developed and with the DesignScript 

language as the unifying technology.  

The overview of the process was as follows: 

1. Establish Site constraints (model existing building shell) 

2. Make regular rectilinear grid over the plan courtyard with a parametric number of 

elements in each direction 

3. Generate a relaxation model derived from the geometric model, with fixed boundary 

nodes on the edge of the grid and liner spring elements in place of the lines. 

4. Relax the model with a negative gravity force to produce an efficient structural form  

5. Identify the relaxed grid cells and generate shading panels associated to the grid unit 

6. Convert the initial geometry into solar analysis panels. 

7. Extract sun path information and analyse the solar panels 



8. Orient the panels base on this information 

9. Obtain the overall insolation incident on the courtyard of the space 

10. Modify the gravitational force of the relaxed grid (step 4) to influence the insolation on   

the floor by reviewing the updated insolation analysis values 

11. Develop a steel structural model with uniform sections based on the relaxed grid with 

the same boundary conditions as the relaxation model.  

12. Check the maximum stresses in each of the beams 

13.Size up any failing beams and down any under-stressed beams in proportion to the 

amount they are off the ideal utilisation of the material 

14.Resize the base grid (step 2) and after the auto update of all the other modeling and 

analysis systems, review whether the steel weights significantly change 

This initial research demonstrated the capability of the system to support the design 

decision process informed by appropriate and reliable performance criteria. The ability to 

nest and reorder generative and analytical processes within the same overall computation 

design environment is another important feature of the system. This allows the generation 

of configurable hierarchies comprised of interrelated geometry generation, analysis and 

decision making processes.  

The system was initially tuned by the user and then subsequently by basic implementation 

of a simple Newtonian goal seeking algorithm. The quality of actual optimisation 

processes can be refined with more time and is the subject of the next research phase.  

When demonstrated at the Berlin workshop, DesignScript with its set of plug-in‟s was 

generally regarded with interest as a system with the capability for practical performance 

driven design. The workshop participants spanned a broad range of architectural and 

engineering experience and a number of the participants were able to take this model as a 

starting point for their own exploration, including re-orienting the hierarchy of the design 

logic towards their own intentions. 

5 Future Research: 

Based on the feedback from the DesignScript workshop… 

There are number of interesting opportunities on the horizon for the next round of research: 

 Imperative Programming: With imperative programming being added to 

DesignScript, the ability for practitioners to develop their own decision making and 

optimisation routines exists. We are preparing for a second stage in the joint 

research collaboration between the Autodesk DesignScript development team and 

Buro Happold. Imperative programming will enable a general purpose genetic 

algorithm to be developed for DesignScript. 

 Options Language and Cloud computing: The  DesignScript  is being extended 

with a special „Options‟ language, which can be to control the generation of 

multiple alternative design solution using cloud based parallelism. Design 

optimisation, and specifically genetic algorithms require large number of solutions 

to be generated. So this approach will be important in future design optimisation. 



Conclusions: 

The Multi-Criteria Design and Optimisation of buildings is an interesting technical 

challenge which if solved has the potential to bring substantial benefits to architects and 

building engineers. This paper shows a conceptual approach to supporting this kind of 

process within a single system.  

More generally, Design Optimisation raises some profound issues for architecture. We 

would all recognise that buildings are social and cultural artefacts as well as complex 

engineering systems: but what is the balance? Do we use engineering to realise 

pre-conceived cultural effects, or is the cultural significance of a building established 

because it symbolises in a single artefact the audacious resolution of multiple, complex and 

interacting engineering challenges. When we consider something like the international 

space station, its validity as a cultural artefact (if considered at all) is derived from its intent 

and its success as an engineering system. But when it comes to terrestrial architecture it 

seems that we have yet to become confident with such a methodology. For all the recent use 

of computational geometry, the concept of a building is all too often over concerned with 

cultural pre-conceptions. Many of the recent advances in Design Computation have 

emerged as tools for iconic architecture. Perhaps we should consider how these tools could 

be harnessed to address more profound issues of global concern.  In a world of increasing 

population and rising economic aspirations coupled with diminishing resources and 

pressing environment concerns, survival will depend on the harnessing of the intellect, 

either directly or in conjunction with computation, where performance and optimality will 

become the new design concept. 
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